On the Lipschitz continuity of the solution map in somegeneralized

نویسندگان

  • Roman Sznajder
  • M. Seetharama Gowda
چکیده

This paper investigates the Lipschitz continuity of the solution map in the settings of horizontal, vertical, and mixed linear complementarity problems. In each of these cases, we show that the solution map is (globally) Lipschitzian if and only if the solution map is single-valued. These generalize a similar result of Murthy, Parthasarathy, and Sabatini proved in the LCP setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

Lipschitz-continuity of the Solution Map of Some Nonconvex Second-order Differential Inclusions

We prove the Lipschitz dependence on the initial condition of the solution set of a nonconvex second-order differential inclusions by applying the contraction principle in the space of selections of the multifunction instead of the space of solutions.

متن کامل

Parameterized Minimax Problem: On Lipschitz-Like Dependence of the Solution with Respect to the Parameter

We study Lipschitz continuity with respect to the parameter of the set of solutions of a parameterized minimax problem on a product Banach space. We present a sufficient condition ensuring that the map which to any value of the parameter assigns the set of solutions of the problem (possibly multi-valued, and unbounded) possesses Lipschitz-like property, introduced by J.-P. Aubin.

متن کامل

Regularity of Set-Valued Maps and Their Selections through Set Differences. Part 1: Lipschitz Continuity

We introduce Lipschitz continuity of set-valued maps with respect to a given set difference. The existence of Lipschitz selections that pass through any point of the graph of the map and inherit its Lipschitz constant is studied. We show that the Lipschitz property of the set-valued map with respect to the Demyanov difference with a given constant is characterized by the same property of its ge...

متن کامل

Lipschitz - type bounds for the map A → | A | on L ( H )

It is well known that the absolute value map on the self-adjoint operators on an infinite dimensional Hilbert spaces is not Lipschitz continuous, although Lipschitz continuity holds on certain subsets of operators. In this note, we provide an elementary proof that the absolute value map is Lipschitz continuous on the set of all operators which are bounded below in norm by any fixed positive con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007